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Abstract Compressible flows exhibit a diverse set of behaviors, where individual parti-

cle transports and their collective dynamics play different roles at different scales. At the

same time, the atmosphere is composed of different components that require additional

degrees of freedom for representation in computational fluid dynamics. It is challenging

to construct an accurate and efficient numerical algorithm to faithfully represent multi-

scale flow physics across different regimes. In this paper, a unified gas-kinetic scheme

(UGKS) is developed to study non-equilibrium multicomponent gaseous flows. Based on

the Boltzmann kinetic equation, an analytical space-time evolving solution is used to con-

struct the discretized equations of gas dynamics directly according to cell size and scales

of time steps, i.e., the so-called direct modeling method. With the variation in the ratio

of the numerical time step to the local particle collision time (or the cell size to the local

particle mean free path), the UGKS automatically recovers all scale-dependent flows over

the given domain and provides a continuous spectrum of the gas dynamics. The perfor-

mance of the proposed unified scheme is fully validated through numerical experiments.

The UGKS can be a valuable tool to study multiscale and multicomponent flow physics.
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1 Introduction

Classical equations of gas dynamics and numerical algorithms are constructed to describe
specific flow evolutions on different scales. For example, by splitting modeling the free flights of
particles and collisions among particles, the Boltzmann equations of the mean free paths of the
particles and the traveling time between successive inter-molecular collisions, i.e., at the kinetic
scale, are established. Following the same physical principle, direct modeling algorithms have
been developed to simulate the equivalent dynamic process, such as the direct simulation Monte
Carlo (DSMC) method[1]. During the simulation, the treatments of the free transport of and
the particles collisions among the particles are decoupled in every iteration, and thus the cell
size and the time step are restricted by local mean free paths and collision times of the particles
throughout. On the contrary, with the increasing characteristic scale, coarse-grained techniques
can be used to describe collective flow behaviors more efficiently. Based on the representation
provided by elements of fluid flows, the Euler and Navier-Stokes (NS) equations are routinely
used to depict the macroscopic motion of fluids.

The Earth atmosphere needs to be considered at least as a binary mixture of nitrogen and
oxygen. The interactions between components of gas add degrees of freedom to the dynamic
system. Different components of gas may move at different speeds, especially when the molec-
ular mass ratio is large, such as in case of the cyclotron motion of ions and electrons in plasma
physics. Considering both intra- and inter-molecular collisions, the Boltzmann equation can be
extended to track the evolution of the distribution function of each particle in a gas mixture[2].
From the macroscopic view, frequent inter-molecular collisions prevent particle penetration be-
tween adjacent fluid elements that parcel different kinds of particles, and thus all components
exhibit coincident behaviors in the gas mixture. Auxiliary equations of the volume fraction,
mass fraction, and ratio of specific heat[3–5] may require the closure of the macroscopic fluid
dynamic system. Detailed interactions between components at the kinetic scale need to be
modeled at the hydrodynamic scale owing to limited resolution in the space and time.

Owing to their well-defined scale hierarchies, both kinetic and hydrodynamic equations and
algorithms are applicable to their respective regimes. However, in gaseous flows in practice,
such a clear scale separation may not be obtained. A typical example is the atmosphere. As
the altitude increases, the gas density decreases continuously, so does the particle mean free
path. Therefore, the atmosphere is associated with multiple scales[6]. With the variation in
scale between the kinetic in the upper atmosphere and the hydrodynamic in the near-ground
region, different physical mechanisms, such as the properties of waves and particles, may play
different roles in flow evolution in different atmospheric layers. With a fixed characteristic scale,
such as the mesh size in a numerical algorithm, the cell’s Knudsen number, Knc, can change
significantly in the flow domain. It is important for a numerical algorithm to possess multiscale
capacity to accurately capture non-equilibrium physical effects in different regimes and provide
a continuous spectrum of flow dynamics from the rarefied to the continuum. To achieve this
goal, it is preferable to model and simulate characteristic flow evolution with respect to local
space-time resolution, such as the ratio of the cell size to the mean free path of particles ∆x/ℓ
and the time step over collision time ∆t/τ . When ∆t ∼ τ and ∆x ∼ ℓ, free transport (the
particle property) is significant and results in prominent transport phenomena. In case ∆t≫ τ
and ∆x≫ ℓ, frequent collisions in a time step (wave property) become dominant in recovering
collective fluid motion. In other words, to develop a reliable numerical algorithm for multiscale
flow transport, the cell size and time step need to be considered as dynamic parameters.

The unified gas-kinetic scheme (UGKS) for the multiscale transport problem[7–10] provides
such a choice. The scales of modeling in the UGKS are the cell size and time step, based
on which the discretized dynamic equations of gas are constructed directly. This is the so-
called direct modeling method. The coupled modeling of particle transport and collision in the
scale-dependent evolving solution of the interface flux function ensures the multiscale nature of
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the algorithm. With the variation in the ratio of time step to local particle collision time (or
cell size to particle mean free path), different mechanisms of flow evolution can be captured
automatically in different regimes. In this paper, the UGKS is extended to gas mixture systems,
and a scheme is proposed that can be used to study multiscale, multicomponent non-equilibrium
flow physics, which has not been fully explored in the previous works, to the best of the authors’
knowledge.

The remainder of this paper is organized as follows. Section 2 provides a brief introduction
to the kinetic theory of gas mixtures, and Section 3 describes the construction of the UGKS
for gas mixtures. Section 4 details numerical examples to verify the performance of the unified
scheme, and Section 5 summarizes the conclusions of this paper.

2 Kinetic theory

The gas kinetic theory describes the evolution of the particle distribution function in the
phase space (xi, ui, ξ, t), where ui is the particle’s velocity, and ξ is an internal variable repre-
senting its rotation and vibration. With separate modeling of particle transport and collision
at the kinetic scale, the equation of the evolution for the distribution function of the species s
in the gas mixture is the so-called Boltzmann equation,

∂fs

∂t
+ us

i

∂fs

∂xi
+ φs

i

∂fs

∂ui
= Qs, (1)

where φs
i is the possible external or self-consistent force term. The collision term is

Qs =

N∑

r=1

Qsr(fs, f r) =

N∑

r=1

∫ ∫
((fs)′(f r)′ − fsf r)gsrσsrdΩidu

r
j , (2)

where f ′ is the post-collision distribution, and r is the index of the gas species. The term
gsr is the relative speed of two molecular classes, and σsrdΩ is the differential cross-section
for the specified collision. Qss(fs, fs) is called the self-collision term, and Qsr(fs, f r) is the
cross-collision term.

The macroscopic, conservative flow variables are moments of the particle distribution func-
tion via

W s =




ρs

ρsUs
i

ρsEs


 =

∫
fsψsdΞs,

where ψs = (1, us
i ,

1
2 (us

iu
s
i + ξsξs))T is a vector of moments for collision invariants, and dΞs =

dus
idξ

s. If we take moments of Eq. (1) in the velocity space, the law of balance of density,
momentum, and energy holds in each species s.

(i) For balance of density,
∂ρs

∂t
+
∂(ρsUs

i )

∂xi
= 0.

(ii) For balance of momentum,

∂(ρsUs
i )

∂t
+
∂(ρsUs

i U
s
j )

∂xj
+
∂T s

ij

∂xj
=

∫
us

iQ
sdΞs.

(iii) For balance of energy,

∂(ρsEs)

∂t
+
∂(ρsEsUs

i )

∂xi
+
∂(T s

ijU
s
j + qs

i )

∂xi
=

∫
1

2
(us

iu
s
i + ξsξs)QsdΞs.
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The term Tij is the stress tensor, and qi is the heat flux. Note that due to exchanges of
momentum and energy among species in the mixture, the collision integrals

∫
us

iQ
sdΞs and∫

1
2 (us

iu
s
i + ξsξs)QsdΞs are no longer equal to zero during flow evolution, whereas the total

density, momentum, and energy are still conserved.
The collision integral Qs redistributes momentum and energy over the colliding pairs, driv-

ing the system towards local equilibrium. On a mesoscopic level, several times larger than
the particle’s mean free path, this effect can be achieved directly by using simplified relax-
ation models, such as the Bhatnagar-Gross-Krook (BGK) model[11] and Shakhov’s model[12]

for single-component gas dynamics. We introduce an extension of the BGK-type model for gas
mixtures proposed by Andries et al.[13], in which a collision operator for the species s is defined
as

Qs =
f+ − fs

τs
. (3)

Equilibrium is determined based on fictitious “global” macroscopic variables, i.e.,

f+ = ρs
( ms

2πkBT
s

)3/2

exp
(
− ms

2kBT
s (us

i − U
s

i )
2
)
, (4)

where ms is the molecular mass, and kB is the Boltzmann constant. This can be further
corrected using a Shakhov-type technique with the correct Prandtl number[14]. The modified
temperature T

s
and velocity U

s

i can be determined as Ref. [15] to consider the interaction among
different species of gas,






U
s

i = Us
i + τs

∑

r

2
ρr

ms +mr
θsr(U r

i − Us
i ),

3

2
kBT

s
=

3

2
kBT

s − ms

2
(U

s

i − Us
i )2

+ τs
∑

r

4ms ρr

(ms +mr)2
θsr

(3

2
kBT

r − 3

2
kBT

s +
mr

2
(U r

i − Us
i )2

)
.

(5)

The frequency of collision is determined by

1

τs
= β

∑

r

θsrρr

mr
, (6)

where β can be chosen as either β = 1 for simplicity or β = 6/5 to coincide with the time
of collision of single-component gas when all components belong to the same species. The
parameter θsr is defined as

θsr =
4
√
π

3

(2kBT
s

ms
+

2kBT
r

mr

)1/2(ds + dr

2

)2

(7)

for a hard sphere model, and

θsr = 0.422π
(asr(ms +mr)

msmr

)
(8)

for the Maxwell molecule, where ds and dr are the molecular diameters, and asr is the propor-
tionality of the intermolecular force.

With the above collision operator, the equation of the BGK-type kinetic model can be
written as

∂fs

∂t
+ us

i

∂fs

∂xi
+ φs

i

∂fs

∂ui
=
f+ − fs

τs
. (9)
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With the local constant collision time τs, the integral solution to Eq. (9) can be formulated by
the method of characteristics[7–8],

fs(xi, t, ui, ξ) =
1

τs

∫ t

tn

f+(x′i, t
′, u′i, ξ)e

−(t−t′)/τdt′

+ e−(t−tn)/τfs(xn
i , t

n, un
i , ξ), (10)

where x′i = xi − u′i(t − t′) − 1
2φi(t − t′)2 and u′i = ui − φi(t − t′) are the particle trajectories

in the phase space, and fs(xn
i , t

n, un
i , ξ) is the gas distribution function of the species s at the

beginning of the nth time step. The above integral solution plays a key role in the cross-scale
modeling of gas dynamics in the UGKS.

3 Numerical algorithm

In this section, we present the principle and numerical implementation of the UGKS for gas
mixtures. For simplicity, the following illustration is based on a two-dimensional (2D) Cartesian
system. The extension to three dimensions is straightforward.
3.1 Construction of interface distribution function

In the unified scheme, the time-evolving distribution function fs(xi+1/2, yj, t, uk, vl, ξ) at
the cell interface xi+1/2 is constructed from the evolution solution (10) to calculate the flux
in the interface. With the notations (xi+1/2, yj , t

n) = (0, 0, 0) and a local constant τs, the
time-dependent interface distribution function can be written as

fs(0, 0, t, uk, vl, ξ) =
1

τs

∫ t

0

f+(x′, y′, t′, u′k, v
′
l, ξ)e

−(t−t′)/τs

dt′

+ e−t/τs

fs(x0, y0, 0, u0
k, v

0
l , ξ), (11)

where x′ = x − u′(t − t′) − 1
2φx(t − t′)2, y′ = y − v′(t − t′) − 1

2φy(t − t′)2, u′ = u − φx(t − t′),
and v′ = v−φy(t− t′) are the particle trajectories in the phase space, and (x0, y0, u0, v0) is the
initial location of the particle that passes through the cell interface at time t.

In the numerical algorithm, the initial gas distribution function fs
0 of any gas component s

around the cell interface xi+1/2 is reconstructed for second-order accuracy,

fs
0 (x, y, 0, uk, vl, ξ) =

{
fsL

i+1/2,j,k,l + σs
i,j,k,lx+ θs

i,j,k,ly, x 6 0,

fsR
i+1/2,j,k,l + σs

i+1,j,k,lx+ θs
i+1,j,k,ly, x > 0,

(12)

where fsL
i+1/2,j,k,l and fsR

i+1/2,j,k,l are the reconstructed initial distribution functions on the left-

and right-hand sides of the cell interface, respectively. The slope of f at the (i, j)th cell and
the (k, l) discretized velocity along the x- and y-directions are denoted by σi,j,k,l and θi,j,k,l,
respectively.

The modified equilibrium distribution function around a cell interface is constructed through
a local Taylor expansion in the space and time as

f+ = f+
0 (1 + (1 −H [x])aLx+H [x]aRx+ by +At), (13)

where f+
0 is the equilibrium distribution at x = 0 and t = 0, and H [x] is the Heaviside step

function. The initial equilibrium distribution function f+
0 at the cell interface depends on

the corresponding local macroscopic flow variables W0, which can be determined from the
compatibility condition, ∑

s

∫
(f+ − fs)|x=0,t=0ψ

sdΞs = 0. (14)
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The total density over the two neighboring cells around the interface is always conserved within
a time step, and thus a local constant on the collision time τs at the interface is assumed based
on Eq. (6).

Following the determination of equilibrium at the cell interface, its space-time derivatives
aL, aR, and A are expanded as

aL,R = aL,R
1 + aL,R

2 u+ aL,R
3 v + aL,R

4

1

2
(u2 + v2 + ξ2) = aL,R

α ψα,

A = A1 +A2u+A3v +A4
1

2
(u2 + v2 + ξ2) = Aαψα.

The spatial slopes (aL, aR, b) can be obtained from slopes of the modified conservative variables
on both sides of a cell interface,

(∂W
s

∂x

)L

=

∫
aLf+

0 ψ
sdΞs,

(∂W
s

∂x

)R

=

∫
aRf+

0 ψ
sdΞs,

∂W
s

∂y
=

∫
bf+

0 ψ
sdΞs.

The time derivative A of f+ is related to the temporal variation of conservative flow variables

∂W
s

∂t
=

∫
Af+

0 ψ
sdΞs,

and can be calculated via the time derivative of the compatibility condition for the gas mixture,

d

dt

∫
(f+ − fs)ψsdΞs |x=0,y=0,t=0= 0.

Following the calculation of all coefficients, the time-dependent interface distribution func-
tion is

fs(0, 0, t, uk, vl, ξ) = (1 − e−t/τs

)f+
0

+ (τs(−1 + e−t/τs

) + te−t/τs

)aL,Rukf
+
0

−
(
τs(τs(−1 + e−t/τs

) + te−t/τs

) +
1

2
t2e−t/τs

)
aL,Rφxf

+
0

+ (τs(−1 + e−t/τs

) + te−t/τs

)bvlf
+
0

−
(
τs(τs(−1 + e−t/τ ) + te−t/τs

) +
1

2
t2e−t/τs

)
bφyf

+
0

+ τs(t/τs − 1 + e−t/τs

)Af+
0

+ e−t/τs
((
fL

i+1/2,j,k0,l0 +
(
− (uk − φxt)t−

1

2
φxt

2
)
σi,j,k0,l0

+
(
− (vl − φyt)t−

1

2
φyt

2
)
θi,j,k0,l0

)
H

[
uk − 1

2
φxt

]

+
(
fR

i+1/2,j,k0,l0 +
(
− (uk − φxt)t−

1

2
φxt

2
)
σi+1,j,k0,l0

+
(
− (vl − φyt)t−

1

2
φyt

2
)
θi+1,j,k0,l0

)(
1 −H

[
uk − 1

2
φxt

]))

= f̃+
i+1/2,j,k,l + f̃i+1/2,j,k,l, (15)
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where f̃+
i+1/2,j,k,l is related to the equilibrium state integration, and f̃i+1/2,j,k,l is the contribu-

tion of the initial distribution. Once the interface distribution function has been determined,
the corresponding fluxes in the conservative variables can be calculated through

F s =

∫

xi+1/2

usfs(0, 0, t, uk, vl, ξ)ψ
sdΞs. (16)

3.2 Update algorithm

With the cell-averaged distribution function for the species s in the gas mixture,

fs
xi,yj,tn,uk,vl

= fn
i,j,k,l =

1

Ω(xi, yj)Ω(uk, vl)

∫

Ωi,j

∫

Ωk,l

fs(x, y, tn, u, v)dxdydudv,

the direct modeling of its evolution gives the laws of conservation of the macroscopic variables
and the particle distribution function in a discretized space,

W
s,n+1
i,j = W

s,n
i,j +

1

Ωi,j

∫ tn+1

tn

∑

r

∆F s
r Lrdt+

∫ tn+1

tn

Qs
i,jdt+

∫ tn+1

tn

Gs
i,jdt, (17)

fs,n+1
i,j,k,l = fs,n

i,j,k,l +
1

Ωi,j

∫ tn+1

tn

∑

r

us
rf

s
r ∆Lrdt+

∫ tn+1

tn

Q(fs)dt+

∫ tn+1

tn

G(fs)dt, (18)

where F s
r is the flux of conservative variables across the cell interface ∆Lr, and fs

r is the
time-dependent gas distribution function at the cell interface. Qs

i,j is the source term of the
macroscopic flow variables owing to intermolecular collisions,

Qs
i,j =

∫

Ωk,l

Q(fs)ψsdΞs, (19)

and Gs
i,j and G(fs) are the external force terms if they exist,






G(fs) = −φx
∂

∂u
fs,n+1

i,j,k,l − φy
∂

∂v
fs,n+1

i,j,k,l ,

Gs
i,j =

∫

Ωk,l

G(fs)ψsdΞs.
(20)

Inside each control volume, the collision term Q(fs) is determined to update the particle
distribution function in Eq. (18). In the unified scheme, the numerical treatment of Q(fs) is
based on the exact Boltzmann collision term and the BGK model. The fast spectral method is
employed[16–17] to the full Boltzmann term, where this is an explicit technique. To overcome the
stiffness of the Boltzmann collision term, especially in the limit of the continuum, an explicit-
implicit collision operator containing the BGK relaxation term is introduced as

∫ tn+1

tn

∫

Ωi,j

Q(fs
i,j,l,m)dt = ηnQ(fs,n

i,j , f
s,n
i,j )l,m + (1 − ηn)

f
(n+1)+
i,j,l,m − fs,n+1

i,j,l,m

τn+1
i,j

. (21)

In the computation, Eq. (17) can be solved first, and its solution can be used to formulate the
Shakhov equilibrium in Eq. (21) at tn+1. As illustrated qualitatively in Eq. (15), the contribu-
tions of the initial distribution and equilibrium state are proportional to the factors e−t/τ and
1 − e−t/τ within an evolving process. Thus, the adjustment coefficient can be defined as

η = ∆t exp(−∆t/τi,j),
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where ∆t is the time step, and τi,j is the local collision time. This procedure plays a role
equivalent to that of the penalty method proposed in Ref. [18], and its stability and convergence
have been analyzed in Ref. [19].

The term for the source of external force of the distribution function can be solved using the
principle below. For the first point at the edge of the particle velocity space in the downwind di-
rection of external acceleration, the velocity derivatives of the distribution function are assumed
to be zero, and thus there is no contribution by the source force in updating the distribution
function at this point. Starting from the next point, the previous updated distribution function
at a discretized velocity point is used to determine the velocity derivatives at the next velocity
point using the upwind finite difference approach. Subsequently, the distribution function fs

can be updated implicitly.
In the UGKS, the time step is determined by the Courant-Friedrichs-Lewy (CFL) condition

in both the physical and phase spaces,

∆t = nCFL min
{ ∆x∆y

umax∆y + vmax∆x
,

∆u∆v

|φx|∆v + |φy |∆u
}
, (22)

where nCFL is the CFL number, and umax = max(|uk|) and vmax = max(|vl|) are the largest
discretized particle velocities of all gas components along the x- and y-directions.
3.3 Summary of algorithm

The numerical algorithm of the proposed UGKS is given below. The UGKS updates conser-
vative variables and distribution functions for each gas component according to Eqs. (17) and
(18). The scale-dependent flux function is determined by the particle distribution function at
the interface, which originates from the integral solution of the kinetic model equation, and is
given by Eq. (15). The detailed numerical procedure for the UGKS is shown in Fig. 1.

τ

Fig. 1 Numerical procedure for UGKS

4 Numerical experiments

In this section, we describe numerical experiments to validate the UGKS for multiscale and
multicomponent flows. Some interesting non-equilibrium phenomena, such as the characteris-
tic behavior of gas components in different flow regimes, are also discussed. In the relevant
calculations, we restrict ourselves to a binary gas mixture (A and B), and a hard-sphere (HS)
monoatomic gas with γ = 5/3 is used in all numerical experiments.
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With the reference molecular mass and number density with the subscript 0,

m0 =
mAn

A
0 +mBn

B
0

nA
0 + nB

0

, n0 = nA
0 + nB

0 , ρ0 = m0n0,

the dimensionless variables are introduced as

x̂ =
x

L0
, ŷ =

y

L0
, ρ̂ =

ρ

ρ0
, T̂ =

T

T0
,

ûi =
ui

(2kBT0/m0)1/2
, Ûi =

Ui

(2kBT0/m0)1/2
, f̂ =

f

ρ0(2kBT0/m0)3/2
,

P̂ij =
Pij

ρ0(2kBT0/m0)
, q̂i =

qi
(ρ0/2)(2kBT0/m0)3/2

, φ̂i =
φi

2kBT0/(L0m0)
,

where ui is the particle velocity, Ui is the macroscopic flow velocity, Pij is the stress tensor, qi
is the heat flux, and φi is the external force acceleration. For simplicity, the hat notation is
dropped to denote the dimensionless variables hereinafter.
4.1 Normal shock structure

The first example is a normal shock structure for a binary gas mixture[20]. Two gas models
are used in the simulation with the same molecular diameter dA = dB but different massesmA >
mB. The upstream gas mixture in the shock wave reference frame is in uniform equilibrium
with the speed U−, temperature T−, and particle number densities nA

− (Component A) and nB
−

(Component B). It is in another equilibrium with the speed U+, temperature T+, and number
densities nA

+ and nB
+ downstream. The Rankine-Hugoniot relation for the gas mixture[21] is






nA,B
+

nA,B
−

=
(γ + 1)Ma2

−

(γ − 1)Ma2
− + 2

,

UA,B
+

UA,B
−

=
(γ − 1)Ma2

− + 2

(γ + 1)Ma2
−

,

T+

T−
=

((γ − 1)Ma2
− + 2)(2γMa2

− − γ + 1)

(γ + 1)2Ma2
−

,

(23)

where the specific heat ratio is γ = 5/3 for monatomic gas, and the upstream Mach number is
defined as

Ma− =
U−

(γkBT−/m0)1/2
. (24)

The density fraction χA,B = nA,B/(nA +nB) is assumed to be equal upstream and downstream,

χA,B
− = χA,B

+ . (25)

The reference mean free path is defined as

ℓ0 =
1√

2πd2
An−

, (26)

where n− = nA
− + nB

−.
In the simulation, the physical domain is set up as x ∈ [−25ℓ0, 25ℓ0], and is divided into

100 cells. The range of space of particle velocity is [−8
√

2kBT−/m0, 8
√

2kBT−/m0], which is
discretized by 100 velocity points. The CFL number is set to be 0.7, and the full Boltzmann
collision operator is solved in the simulation. Different upstream Mach numbersMa− = 1.5 and
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3.0, molecular mass ratiosmB/mA = 0.5 and 0.25, and number density fractions nA/(nA+nB) =
0.1, 0.5, and 0.9 are used in the simulation. The results are normalized as

n̂A,B =
nA,B − nA,B

−

nA,B
+ − nA,B

−

, T̂A,B =
TA,B − T−
T+ − T−

, (27)

and the origin x = 0 of the figures is determined by requiring that n|x=0 = (n− + n+)/2.
The results with different upstream Mach numbers and concentrations are shown in Figs. 2–

10, where the Boltzmann solutions are calculated by the numerical kernel method[20], and the
pure BGK results are plotted simultaneously. The UGKS provides equivalent solutions to the
Boltzmann equation in all cases. From Figs. 2–4, with the upstream Mach number Ma− = 1.5
and mass ratio mB/mA = 0.5, the solutions of the UGKS, Boltzmann, and BGK methods
exhibit good agreement under different number density fractions nA/(nA + nB) = 0.1, 0.5, and
0.9. In these cases, with moderate non-equilibrium effects, the BGK model can be considered
a proper approximation of the Boltzmann collision operator.

Fig. 2 Normal shock structure with Ma
−

= 1.5, mB/mA = 0.5, and nA/(nA+nB)=0.1 (color online)

Fig. 3 Normal shock structure with Ma
−

=1.5, mB/mA =0.5, and nA/(nA + nB)=0.5 (color online)

However, when the mass ratio becomes mB/mA = 0.25 at a fixed Mach number Ma− = 1.5,
the differences between the Boltzmann and BGK solutions become prominent. As shown in
Figs. 5–7, with the decreasing number density fraction of the lighter component B, deviations
in the two solutions become more significant. When the Mach number increases to Ma− = 3.0
with mB/mA = 0.5 in Figs. 8–10, the shock structure narrows, accompanied by strong non-
equilibrium effects. Although the density solutions are still acceptable, the BGK temperature
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profiles arise earlier upstream, which is a common drawback of the BGK model. This phe-
nomenon occurs because of insufficient degrees of freedom modeled in the BGK relaxation
term. The model thus fails to provide the correct transport coefficients within the shock under
strong non-equilibrium effects. It is therefore unsurprising that this phenomenon of arising
early is more severe for the lighter gas component B, which has a higher thermal velocity and
leads to more significant free transport phenomena among the particles.

Fig. 4 Normal shock structure with Ma
−

=1.5, mB/mA = 0.5, and nA/(nA +nB)=0.9 (color online)

Fig. 5 Normal shock structure with Ma
−

= 1.5, mB/mA = 0.25, and nA/(nA + nB) = 0.1 (color
online)

Fig. 6 Normal shock structure with Ma
−

= 1.5, mB/mA = 0.25, and nA/(nA + nB) = 0.5 (color
online)
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Fig. 7 Normal shock structure with Ma
−

= 1.5, mB/mA = 0.25, and nA/(nA + nB) = 0.9 (color
online)

Fig. 8 Normal shock structure with Ma
−

= 3.0, mB/mA = 0.5, and nA/(nA + nB) = 0.1 (color
online)

Fig. 9 Normal shock structure with Ma
−

= 3.0, mB/mA = 0.5, and nA/(nA + nB) = 0.5 (color
online)

4.2 Shock tube problem under external force field

The second case is the sod shock tube problem. The computational domain is x ∈ [0, 1],
divided into 100 cells. The velocity space is discretized into 100 uniform points to update the
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particle distribution function. The initial condition is set to be
{
ρ = 1.0, U = 0.0, p = 1.0, x 6 0.5,

ρ = 0.125, U = 0.0, p = 0.1, x > 0.5.

Fig. 10 Normal shock structure with Ma
−

= 3.0, mB/mA = 0.5, and nA/(nA + nB) = 0.9 (color
online)

To test multiscale properties of the unified scheme, simulations are performed with reference
Knudsen numbers Kn = 0.000 1, Kn = 0.01, and Kn = 1.0, corresponding to the typical
continuum, transition, and free molecular flow regimes, respectively. Two molecular masses
and number density ratios are set in the simulations. In the first case, they are mB/mA = 0.5
and nA/(nA +nB) = 0.5, and are mB/mA = 0.25 and nA/(nA +nB) = 0.75 in the second case.

The numerical solutions at t = 0.15 are shown in Figs. 11–16. The reference solutions of
continuum flows are calculated by a continuum gas-kinetic scheme (GKS)-NS solver[22] with
1 000 cells, and the free molecular flow solutions are derived from the collisionless Boltzmann
equation. The collision operator is solved for in the simulation by Eq. (21).

In the continuum regime with Kn = 0.000 1, the time of collision is considerably smaller
than the time step. As a result, the unified scheme becomes a shock-capturing method owing
to the limited resolution in both the space and time, which leads to two-species Euler solutions.
As shown in Figs. 11 and 14, the frequent collisions prevent individual particle transport, and
both gas components show the coincident behavior, as in the case of single-component gas.

With the increase in the Knudsen number and collision time, the number of degrees of
freedom of individual particle transport increases, and flow physics changes significantly. As
shown in Figs. 12, 13, 15, and 16, a smooth transition occurs from the Euler solutions of
the Riemann problem to collisionless Boltzmann solutions. As different gas components have
specific molecular masses, the lighter gas is transported more quickly than the heavier ones
in the tube, as shown in Figs. 13(b) and 16(b), which results in different profiles of density
and temperature. Therefore, it is reasonable that with the decreasing mass ratio and number
density fraction of the lighter gas, there is a more significant variation in flow dynamics between
components, which is shown in Figs. 13 and 16. This test case clearly illustrates the capacity
of the unified scheme to simulate multiscale flow physics in different regimes.

5 Conclusions

The compressible flow is associated with multiple scales owing to the large variations in
density and the characteristic length scale of the flow structures. Based on direct modeling
in a discretized space, a UGKS for multiscale and multicomponent flows is developed in this
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Fig. 11 Sod shock tube with mB/mA = 0.5, nA/(nA + nB) = 0.5, and Kn = 0.000 1

Fig. 12 Sod shock tube with mB/mA = 0.5, nA/(nA + nB) = 0.5, and Kn = 0.01
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Fig. 13 Sod shock tube with mB/mA = 0.5, nA/(nA + nB) = 0.5, and Kn = 1.0

Fig. 14 Sod shock tube with mB/mA = 0.25, nA/(nA + nB) = 0.75, and Kn = 0.000 1
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Fig. 15 Sod shock tube with mB/mA = 0.25, nA/(nA + nB) = 0.75, and Kn = 0.01

Fig. 16 Sod shock tube with mB/mA = 0.25, nA/(nA + nB) = 0.75, and Kn = 1.0
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paper. A detailed strategy for the construction of the proposed algorithm is provided, and its
performance is validated through numerical experiments. Owing to multiscale direct modeling,
the UGKS can capture all scale-dependent flow physics occurring simultaneously in the flow
domain, which is critical to study multiscale non-equilibrium gas mixture systems. Numerical
experiments are presented to validate the scheme. New physical observations, such as consis-
tent transport in the hydrodynamic regime and decoupled transport in the rarefied regime of
different gas components, are identified and discussed. The unified scheme provides a powerful
choice to study non-equilibrium gaseous flows, which is useful for application to astronomy and
astrophysics.
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