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What’s UQ?

Combining computational models, physical observations, and possibly expert 
judgment to make inferences about a physical system.  
David Higdon, Los Alamos National Lab

Uncertainty quantification attempts to express the known unknowns. 
Bill Oberkampf, Sandia National Lab

UQ is about providing bounds on our knowledge of system behavior and on 
confidence in our predictions.
Omar Knio, Johns Hopkins University

UQ is the difference between success and failure.
Gianluca Iaccarino, Stanford University



What’s UQ?

UQ is quantification of the effect of uncertainty. It sounds boring indeed but I 
don't see anything else to it. 
Dongbin Xiu, Ohio State University

Man – that’s a hard question!!
Tim Trucano, Sandia National Lab

Counting sh*t you can’t see.
Carter Rose, Dallas, Texas



What’s UQ?

I guess “uncertainty" means a lack of certainty or knowledge; i.e. ignorance. 
This is one definition that suggests that subjective probability may be a 
reasonable way to think of uncertainty wherein randomness refers to a lack of 
knowledge. Quantification, of course, means to quantify, to observe and 
assign a measure. I like the Wikipedia definition: an act of measuring that 
maps human observations and experiences into a set of numbers. I would 
weaken that a little: human observations include those made by humans 
using instruments. Thus, Uncertainty Quantifivation is precisely the 
quantification of one's lack of knowledge concerning (in science and 
engineering) a physical reality.

J. Tinsley Oden, The University of Texas at Austin



An illustrative example of UQ: Burgers’ Equation
Viscous Burgers’ equation

⇢
ut + uux = vuxx, x 2 (�1, 1)
u(�1) = 1, u(1) = �1

u(�1, t) = 1 + �



UQ in CFD
Cauchy problem for hyperbolic conservation law

@U

@t
+rx · F(U,!) = 0, t > 0

• random flux coefficients $\omega$

• the initial data U0(x,z)

• the boundary data Ub(t,x,z)

Randomness could come from 

@U

@t
+rx · F(U) = 0, t > 0

U(x, 0) = U0(x),x 2 Rd



Stochastic Sod Problem with Random Initial Data 
Riemann problem for the Euler equations

@U

@t
+

@F(U)

@x
= 0, x 2 (0, 2)

U(x, 0, y) = U0(x, y) =

⇢
UL, x < Y (!)
UR, x > Y (!)

y = Y (!),! 2 ⌦

Apply the SFV method to solve the system with Y(\omega) 
uniformly distributed on [0.95; 1.05]︎ 

W0(x,!) = [⇢0(x,!), u0(x,!), p0(x,!)]
> =[1.0, 0.0, 1.0] if x < Y (!)

[0.125, 0.0, 0.1] if x > Y (!)

[1] Schwab, C., and Tokareva, S. (2013). High order approximation of probabilistic shock profiles in hyperbolic conservation 
laws with uncertain initial data∗∗∗. ESAIM: Mathematical Modelling and Numerical Analysis, 47(3), 807-835. 
[2] Abgrall, R., and Tokareva, S. (2017). The Stochastic Finite Volume Method. In Uncertainty Quantification for Hyperbolic 
and Kinetic Equations (pp. 1-57). Springer, Cham.



Stochastic Sod Problem with Random Initial Data 



Stochastic Sod Problem with Random Initial Data and Flux
Riemann problem for the Euler equations

@U

@t
+

@F(U,!)

@x
= 0, x 2 (0, 2)

U(x, 0,!) = U0 (x, Y1(!), Y2(!)) =

⇢
UL (Y2(!)) , x < Y1(!)
UR, x > Y1(!)

F(U,!) = F (U, Y3(!))

U = [⇢, ⇢u,E]>,F =
⇥
⇢u, ⇢u2 + p, ⇢u(E + p)

⇤>

p = (� � 1)
�
E � 1

2⇢u
2
�

� = � (Y3(!))

W0(x,!) = [⇢0(x,!), u0(x,!), p0(x,!)]
>

=[1.0, 0.0, 1.0] x < Y1(!)

[0.125 + 0.5Y2, 0.0, 0.1] x > Y1(!)

Y1~U[0.95,1.05], Y2~U[0.1,0.1], Y3~U[1.2,1.6]



Stochastic Sod Problem with Random Initial Data and Flux



UQ in kinetic theory: plus collision effect

8
<

:

@f
@t + v ·rxf = 1

KnQ(f, f)(t,x,v, z), t > 0,x 2 ⌦,v 2 Rd, z 2 Iz
f(0,x,v, z) = f0(x,v, z), x 2 ⌦,v 2 Rd, z 2 Iz
f(t,x,v, z) = g(t,x,v, z), t � 0,x 2 @⌦,v 2 Rd, z 2 Iz

Cauchy problem for the kinetic equation

Randomness could come from 

• the collision kernel, for instance, B = bλ(zB )|v − v∗|λ;

• the boundary data g(t,x,v,z), in which uw and Tw are replaced by 
uw(t,x,zb) and Tw(t,x,zb); 

• the initial data f0(x,v,z), via initial macroscopic quantities: density 
ρ0(x,zi), temperature T0(x,zi), etc. 



UQ in kinetic theory: plus collision effect
numerical methods developed for uncertainty quantification 

• Monte Carlo methods: sample randomly in the random space, 
which results in halfth order convergence 

• stochastic collocation methods: use sample points on a well-
designed grid, and one can evaluate the statistical moments by 
numerical quadratures. 

• stochastic Galerkin methods: start from an orthonormal basis in the 
random space, and approximate functions by truncated polynomial 
chaos expansions. 

f(t,x,v, z) ⇡
MX

|k|=0

fk(t,x,v)�k(z) := fM (t,x,v, z)

< �k,�j >!=

Z

lk

�k(z)�j(z)!(z)dz = �k,, 0  |k|, |j|  M



Stochastic Boltzmann solution
Homogeneous relaxation with random collision kernel

@f

@t
= B(z)(M� f)

B(z) = 1 + s1z1 + s2z2, s1 = 0.2, s2 = 0.1

f0(v) = v2e�v2

or Boltzmann collision operator, with



Stochastic Boltzmann solution
Other scenarios

Random initial data, e.g.

Random boundary data, e.g.


