# **To Understand Uncertainty Quantification**

XIAO Tianbai

## What's UQ?

Combining computational models, physical observations, and possibly expert judgment to make inferences about a physical system. **David Higdon,** Los Alamos National Lab

Uncertainty quantification attempts to express the known unknowns. **Bill Oberkampf**, Sandia National Lab

UQ is about providing bounds on our knowledge of system behavior and on confidence in our predictions.

**Omar Knio**, Johns Hopkins University

UQ is the difference between success and failure. **Gianluca laccarino**, Stanford University

### What's UQ?

UQ is quantification of the effect of uncertainty. It sounds boring indeed but I don't see anything else to it. **Dongbin Xiu,** Ohio State University

Man – that's a hard question!! **Tim Trucano**, Sandia National Lab

Counting sh\*t you can't see. Carter Rose, Dallas, Texas

## What's UQ?

I guess "uncertainty" means a lack of certainty or knowledge; i.e. ignorance. This is one definition that suggests that subjective probability may be a reasonable way to think of uncertainty wherein randomness refers to a lack of knowledge. Quantification, of course, means to quantify, to observe and assign a measure. I like the Wikipedia definition: an act of measuring that maps human observations and experiences into a set of numbers. I would weaken that a little: human observations include those made by humans using instruments. Thus, Uncertainty Quantifivation is precisely the quantification of one's lack of knowledge concerning (in science and engineering) a physical reality.

J. Tinsley Oden, The University of Texas at Austin

#### An illustrative example of UQ: Burgers' Equation

Viscous Burgers' equation

$$\begin{cases} u_t + uu_x = vu_{xx}, & x \in (-1, 1) \\ u(-1) = 1, & u(1) = -1 \end{cases}$$

$$u(-1,t) = 1 + \delta$$



## UQ in CFD

Cauchy problem for hyperbolic conservation law

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla_x \cdot \mathbf{F}(\mathbf{U}) = \mathbf{0}, t > 0$$
$$\mathbf{U}(\mathbf{x}, 0) = \mathbf{U}_0(\mathbf{x}), \mathbf{x} \in \mathbb{R}^d$$
$$\frac{\partial \mathbf{U}}{\partial t} + \nabla_x \cdot \mathbf{F}(\mathbf{U}, \omega) = \mathbf{0}, t > 0$$

#### Randomness could come from

- random flux coefficients \$\omega\$
- the initial data  $U^{0}(x,z)$
- the boundary data  $U^{b}(t,x,z)$

#### **Stochastic Sod Problem with Random Initial Data**

Riemann problem for the Euler equations

$$\begin{aligned} \frac{\partial \mathbf{U}}{\partial t} &+ \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = \mathbf{0}, \quad x \in (0, 2) \\ \mathbf{U}(x, 0, y) &= \mathbf{U}_0(x, y) = \begin{cases} \mathbf{U}_L, x < Y(\omega) \\ \mathbf{U}_R, x > Y(\omega) \end{cases} \\ y &= Y(\omega), \omega \in \Omega \end{aligned}$$

Apply the SFV method to solve the system with Y(\omega) uniformly distributed on [0.95; 1.05]

$$\mathbf{W}_{0}(x,\omega) = \begin{bmatrix} \rho_{0}(x,\omega), u_{0}(x,\omega), p_{0}(x,\omega) \end{bmatrix}^{\top} = \begin{bmatrix} 1.0, 0.0, 1.0 \end{bmatrix} \quad \text{if } x < Y(\omega) \\ \begin{bmatrix} 0.125, 0.0, 0.1 \end{bmatrix} \quad \text{if } x > Y(\omega) \end{bmatrix}$$

[1] Schwab, C., and Tokareva, S. (2013). High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data\*\*\*. *ESAIM: Mathematical Modelling and Numerical Analysis*, *47*(3), 807-835.
[2] Abgrall, R., and Tokareva, S. (2017). The Stochastic Finite Volume Method. In *Uncertainty Quantification for Hyperbolic and Kinetic Equations* (pp. 1-57). Springer, Cham.

#### **Stochastic Sod Problem with Random Initial Data**



#### **Stochastic Sod Problem with Random Initial Data and Flux**

Riemann problem for the Euler equations

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U},\omega)}{\partial x} = \mathbf{0}, \quad x \in (0,2)$$
$$\mathbf{U}(x,0,\omega) = \mathbf{U}_0\left(x, Y_1(\omega), Y_2(\omega)\right) = \begin{cases} \mathbf{U}_L\left(Y_2(\omega)\right), x < Y_1(\omega)\\ \mathbf{U}_R, x > Y_1(\omega) \end{cases}$$

$$\mathbf{U} = [\rho, \rho u, E]^{\top}, \mathbf{F} = [\rho u, \rho u^{2} + p, \rho u(E + p)]^{\top}$$
$$\mathbf{F}(\mathbf{U}, \omega) = \mathbf{F}(\mathbf{U}, Y_{3}(\omega)) \qquad p = (\gamma - 1) \left(E - \frac{1}{2}\rho u^{2}\right)$$
$$\gamma = \gamma \left(Y_{3}(\omega)\right)$$
$$\mathbf{W}_{0}(x, \omega) = \left[\rho_{0}(x, \omega), u_{0}(x, \omega), p_{0}(x, \omega)\right]^{\top}$$
$$= \left[1.0, 0.0, 1.0\right] \qquad x < Y_{1}(\omega)$$

$$[0.125 + 0.5Y_2, 0.0, 0.1] \qquad x > Y_1(\omega)$$

Y1~U[0.95,1.05], Y2~U[0.1,0.1], Y3~U[1.2,1.6]

#### **Stochastic Sod Problem with Random Initial Data and Flux**



### UQ in kinetic theory: plus collision effect

Cauchy problem for the kinetic equation

$$\begin{cases} \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\mathrm{Kn}} \mathcal{Q}(f, f)(t, \mathbf{x}, \mathbf{v}, \mathbf{z}), & t > 0, \mathbf{x} \in \Omega, \mathbf{v} \in \mathbb{R}^{d}, \mathbf{z} \in I_{\mathbf{z}} \\ f(0, \mathbf{x}, \mathbf{v}, \mathbf{z}) = f^{0}(\mathbf{x}, \mathbf{v}, \mathbf{z}), & \mathbf{x} \in \Omega, \mathbf{v} \in \mathbb{R}^{d}, \mathbf{z} \in I_{\mathbf{z}} \\ f(t, \mathbf{x}, \mathbf{v}, \mathbf{z}) = g(t, \mathbf{x}, \mathbf{v}, \mathbf{z}), & t \ge 0, \mathbf{x} \in \partial\Omega, \mathbf{v} \in \mathbb{R}^{d}, \mathbf{z} \in I_{\mathbf{z}} \end{cases}$$

#### Randomness could come from

- the collision kernel, for instance,  $B = b_{\lambda}(z^{B})Iv v_{*}I^{\lambda}$ ;
- the boundary data g(t,x,v,z), in which u<sub>w</sub> and Tw are replaced by u<sub>w</sub>(t,x,z<sup>b</sup>) and T<sub>w</sub>(t,x,z<sup>b</sup>);
- the initial data f<sup>0</sup>(x,v,z), via initial macroscopic quantities: density ρ0(x,z<sup>i</sup>), temperature T0(x,z<sup>i</sup>), etc.

### UQ in kinetic theory: plus collision effect

numerical methods developed for uncertainty quantification

- Monte Carlo methods: sample randomly in the random space, which results in halfth order convergence
- stochastic collocation methods: use sample points on a welldesigned grid, and one can evaluate the statistical moments by numerical quadratures.
- stochastic Galerkin methods: start from an orthonormal basis in the random space, and approximate functions by truncated polynomial chaos expansions.

$$f(t, \mathbf{x}, \mathbf{v}, \mathbf{z}) \approx \sum_{|\mathbf{k}|=0}^{M} f_{\mathbf{k}}(t, \mathbf{x}, \mathbf{v}) \Phi_{\mathbf{k}}(\mathbf{z}) := f_{M}(t, \mathbf{x}, \mathbf{v}, \mathbf{z})$$
$$< \Phi_{\mathbf{k}}, \Phi_{\mathbf{j}} >_{\omega} = \int_{l_{k}} \Phi_{\mathbf{k}}(\mathbf{z}) \Phi_{\mathbf{j}}(\mathbf{z}) \omega(\mathbf{z}) d\mathbf{z} = \delta_{\mathbf{k},}, \quad 0 \le |\mathbf{k}|, |\mathbf{j}| \le M$$

#### **Stochastic Boltzmann solution**

Homogeneous relaxation with random collision kernel

$$\frac{\partial f}{\partial t} = B(\mathbf{z})(\mathcal{M} - f)$$

or Boltzmann collision operator, with

$$f^{0}(v) = v^{2}e^{-v^{2}}$$
$$B(\mathbf{z}) = 1 + s_{1}z_{1} + s_{2}z_{2}, \quad s_{1} = 0.2, s_{2} = 0.1$$



**Fig. 4.** Example 2.  $\mathbb{E}[f]$  and S[f] at  $v_2 = 0$ . "Col" stands for collocation, "Gal" stands for Galerkin. Heun is used for Galerkin, RK-4 is used for collocation.

### **Stochastic Boltzmann solution**

Other scenarios

Random initial data, e.g.

$$\begin{cases} \rho_l = 1 + s_1 \left( \frac{z+1}{2} \right), & u_l = 0, \quad T_l = 1 + s_2 z, \quad x \le 0.5, \\ \rho_r = 0.125, & u_r = 0, \quad T_r = 0.25, \quad x > 0.5. \end{cases}$$

Random boundary data, e.g.

$$T_w(z) = 2(T_0 + sz), \quad s = 0.2.$$